Nilai lim_(x→5)⁡ (x^2-25)/(√(x^2+24)-7)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 5} \ \frac{x^2-25}{\sqrt{x^2+24}-7} = \cdots \)

  1. 0
  2. 5
  3. 7
  4. 14
  5. 18

(SPMB 2007)

Pembahasan:

\begin{aligned} \lim_{x \to 5} \ \frac{x^2-25}{\sqrt{x^2+24}-7} &= \lim_{x \to 5} \ \frac{x^2-25}{\sqrt{x^2+24}-7} \times \frac{\sqrt{x^2+24}+7}{\sqrt{x^2+24}+7} \\[8pt] &= \lim_{x \to 5} \ \frac{(x^2-25)(\sqrt{x^2+24}+7)}{(x^2+24)-49} \\[8pt] &= \lim_{x \to 5} \ \frac{(x^2-25)(\sqrt{x^2+24}+7)}{x^2-25} \\[8pt] &= \lim_{x \to 5} \ (\sqrt{x^2+24}+7) \\[8pt] &= \sqrt{5^2 + 24} + 7 = \sqrt{49} + 7 \\[8pt] &= 14 \end{aligned}

Jawaban D.